Materials

Bonding between Atoms

Attraction

Coulombic force between particles

$$F_A = q_1 q_2 / 4\pi \epsilon_0 r^2$$

q1,q2 – electric charge of the two ions

E_0 – permittivity of vacuum

r – distance between particles

More simply

$$F_A = A'/r^2$$

Work done by F_a for pulling particle from infinity to position r

$$E_A = \int_r^\infty F_a dr = -\frac{A}{r}$$

Repulsion

$$F_R = -\frac{B'}{r^{n+1}}$$
$$E_R = B/r^n$$

Total

$$F_N = \frac{dE_N}{dr} = F_A + F_R = \frac{A'}{r^2} - \frac{B'}{r^{n+1}} \cong \frac{A'}{r^{m+1}} - \frac{B'}{r^{n+1}}$$

$$E_N = E_A + E_R = -\frac{A}{r} + \frac{B}{r^n} \cong -\frac{A}{r^m} + \frac{B}{r^n}$$

Covalent bonding

Sharing electrons, strong primary bonds

m<n

Metallic bonding

Valence elecrons can move freely from atom to atom – not localised

m<n

van der Waals bonding

Dipoles form and go at all times, attraction between oppositely charged poles, weak secondary bonds

Effect of Temperature

T1 < T2 < T3 < T4 < T5

As temperature increases, r increases – thermal expansion

Effect of Force

rB: breaking distance

FB: breaking force

Once you have passed the breaking distance/force it becomes easier to pull the atom away

Structure of Crystalline Solids

General

- Amorphous solids packing of atoms is random
- Crystalline periodic packing of atoms
- Unit cell repeating unit in crystal
- Materials take certain structures so that the lowest potential is achieve

Face-Centered Cubic (FCC)

Equivalent atoms	4
Length of a	$2\sqrt{2} * R$
Total volume of unit cell	$16\sqrt{2}R^3$
Total volume of atoms	$\frac{16}{3}\pi R^3$
Atomic packing factor (APF)	0.74
Packing type	AB

Body-Centered Cubic (BCC)

Equivalent atoms	2
Length of a	4R
	$\overline{\sqrt{3}}$

Total volume of unit cell	64 <i>R</i> ³
	$\overline{3\sqrt{3}}$
Total volume of atoms	$\frac{8}{3}\pi R^3$
Atomic packing factor (APF)	0.68

Hexagonal Close-Packed (HCP)

Equivalent atoms	6
Ratio c/a	1.633
Total volume	
Atomic packing factor (APF)	0.74
Packing type	ABC

Close-packed plane (layer A)

Intestitial sites: B(upright triangles), C(upside down triangles)

AB Packing

Miller indices

<uvw> is a family of directions [uvw], every direction has the same arrangement of atoms

{uvw} is a family of planes (uvw)

Defects in Crystalline Solids

General

- Perfect crystals have no irregularity
- Defects can give strength and rise to processes like diffusion
- Distortion is deviation of atoms from their sites
- Defects have higher energy

Point defects

Vacancy

- Atoms missing from lattice sites
- $\frac{N_V}{N} = \exp\left(-\frac{Q_v}{kT}\right)$ N - total number of lattice sites Qv - formation energy of one vacncy k - Boltzmann's constant T - absolute temperature
- Nv = 0 only at T = 0
- Nv = 1 at T = infinity
- Nv increases with T

Impurity (Alloying)

Interstitial impurity atom

- Substitutional atoms occupy the lattice sites of host atoms
- Interstitial atoms stay between the host atoms

Line defects

Dislocations

- Edge dislocations: extra half plane of atoms, distortion around dislocation line with associated elastic energy due to changing distance between atoms.
- Screw dislocations: displaced atoms along dislocation line
- Mixed dislocations

Plane defects

Grain boundaries

Elastic Deformation

General

- Bonds are being pulled apart, linear relationship for most materials (metal), nonlinear for some (rubber)
- Some materials lose energy during unloading

• Anelasticity – time dependent elastic deformation

Formulas

Stress:
$$\sigma = \frac{F_n}{A_0}$$

Shear stress: $\tau = \frac{F_s}{A_0}$
Strain: $\epsilon = \frac{l - l_0}{l_0} = \frac{\delta l}{l_0}$
Poissons: $v = -\frac{\epsilon_w}{\epsilon}$
Shear strain: $\gamma = \tan\theta$

Plastic Deformation

General

- Movement of dislocations
- Permanent deformation

Yielding

- Yield point divides between elastic/plastic
- Proportional limit divides between linear and nonlinear behaviour
- 0.2% proof stress Approximates yield point with line parallel to linear region drawn from 0.2% strain

Tensile Strength

- Maximum stress material can withstand
- Higher than yield stress due to work hardening
- Necking happens after this point until fracture

Ductility

• Total plastic strain at fracture:
$$\delta = \frac{l_f - l_0}{l_0}$$

• Reduction in area:
$$RA = \frac{A_0 - A_f}{A_0}$$

True Stress and Strain

• Area/Length change as material is deformed

•
$$\sigma_T = \frac{F}{A_i}$$

•
$$\epsilon_T = \int d\epsilon = \int_{l_0}^{l_f} \frac{dl_i}{l_i} = \ln\left(\frac{l_f}{l_0}\right)$$

• In plotting the true stress vs true strain curve

$$\sigma_T = \sigma(1 + \epsilon)$$

$$\epsilon_T = \ln(1 + \epsilon)$$

After necking, use actual force area and length to calculate true stress and strain as these equations are no longer valid

Plastic Instability

- Before UTS plastic deformation is uniform
- At UTS, necking starts and deformation becomes non-uniform (becomes localised at neck)
- Want to maximise uniform deformation
- Flow stress is the stress needed to cause flow (plastic deformation)

Flow force = $A\sigma_{T}$ (A is the real area at the moment)

- in tension: $A \Psi$;
- $\sigma_{T} \uparrow (work hardening)$
- if σ_T ↑ more than A ↓ so that Aσ_T ↑, flow not localised
- if σ_T ↑ less than A ↓ so that Aσ_T ↓, flow localised
 = instability (necking)

Resilience and plastic work

• Modulus of resilience is the elastic strain energy per volume stored in the material at point of yielding

$$U_{r} = \int_{0}^{\epsilon_{y}} \sigma d\epsilon$$

When Hooke's law applies
$$U_{r} \cong \frac{1}{2}\sigma_{y}\epsilon_{y} = \frac{\sigma_{y}^{2}}{2E}$$

• Plastic work per volume Wp – work done to cause a plastic strain of ϵ_p

Dislocations & Plastic Deformation

Movement of dislocations

Dislocation shifts across •

Slip Systems

- 12 slip systems in a FCC structure: 4 x {111} planes & 3 <110> directions on each plane

(top)

- Dislocation moves on slip plane •
- Dislocation density increases with deforming .
- Often takes place on close packed planes and directions because they require smallest stress • to slip
- One slip plane + one slip direction = slip system •

Slip in single crystals

- ϕ is angle between normal to slip plane and force
- λ is angle between force and slip direction
- Schmidt factor = $cos\phi cos\lambda$
- $\tau_R = \frac{F_s}{A_s} = \sigma cos\phi cos\lambda$
- $\tau_{R(MAX)} = \sigma cos\phi cos\lambda = \sigma cos\phi sin\phi$, $\lambda = \frac{\pi}{2} \phi$
- The stress required to cause slip is the critical resolve shear stress τ_{CRSS}

Plastic deformation of polycrystalline materials

- Grains have their own usually random orientation
- Schmid factor varies, so an average behaviour is observed
- Yield strength is dependent on grain size

Strengthening and Softening

General

- Alloys typically stronger than pure
- Alloys stronger as more deformed
- Finer grain sizes are stronger
- Metals can be softer after exposure at higher temp
- Strengthening occurs by stopping movement of dislocations/increasing difficulty of movement
- Can be achieved by changing composition

Grain Size Strengthening

- Grain boundaries can be a barrier to dislocations
- Dislocations may not be able to continue between grains as they are different orientations
- Large angle boundaries are more effective
- Finer grains = more grain boundaries
- Hall-Petch relationship, σ₀, k_y are constants.
 Yield strength increases rapidly with decreasing grain size. May not work at extreme small/large grain sizes.

$$\sigma_y = \sigma_0 + \frac{k_y}{\sqrt{d}}$$

Solid Solution Strengthening

- Smaller/Larger atoms cause compressive/tensile stress fields around them.
- Atoms 'saddle' dislocations
- Makes it harder for dislocations to move
- $\Delta \sigma_y \propto \sqrt{C_{solute}}$, Csolute is the concentration of solute atoms

Strain hardening

- Cold working (deforming material at low temp) hardens the material
- Yield strength/UTS increased but elongation reduced with increasing strain
- $%CW = \frac{A_0 A}{A_0} * 100$, A0 is area before deformation, A is area after deformation
- In cold working the density of dislocations increases and they interact with each other making dislocation movement more difficult
- $\Delta \sigma_y \propto \sqrt{P_{dislocation}}$

Precipitation Strengthening

- Fine particles act as obstacles to dislocation
- Dislocations can pass through by looping or cutting through, requires extra stress
- $\Delta \sigma_y \propto \frac{1}{d}$, d is the average interparticle spacing

Softening after cold working

- Recovery
 - Heating a cold worked material with moderately elevated T
 - Dislocations will rearrange themselves reducing amount of dislocations and lower energy configuration
 - Strength lowered
- Recrystallisation
 - Heating to above recrystallization temp creates new grains with low dislocation density from matrix of high strain energy
 - Reduces number of dislocations dramatically
 - Decrease in strength and increase in ductility
- Grain growth
 - Grains will become larger with time at elevated temp
 - Driven by reduction in grain boundary area

Fast Fracture

General

- Materials may have cracks in them
- Cracks can propagate
 - Very fast: sudden fracture
 - Slow: fatigue and creep failure
- Brittle fracture
 - Happens without plastic deformation first, most dangerous
- Can strengthen by diverting cracks/consuming energy and increase toughness

Griffith Criterion

 $G_c = 2\gamma_s$ γ_s : surface energy per area

- For a piece of material volume V containing a crack with area A with a given stress, total elastic energy stored is E^eV , total crack energy is G_cA
- For fast propagation, energy released due to cutting bonds > increase in energy of crack due to larger size.
- Griffith Criterion

$$\sigma = \sqrt{\frac{2E\gamma_s}{\pi a}} = \sigma_c$$

When stress reaches critical value, an internal crack with size of 2a or surface crack with size of a becomes unstable and will propagate fast causing fracture.

• Surface crack is more dangerous

Fracture toughness

• Can rewrite Griffith criterion

$$\sigma\sqrt{\pi a} = \sqrt{2E\gamma_s} = \sqrt{EG_c}$$

• Criterion for fast fracture

 $Y\sigma\sqrt{\pi a} = K$ K = stress intensity factor $Y = constant, Y \cong 1 \text{ for small cracks}$ $\sqrt{EG_c} = K_c$, Critical stress intensity factor = fracture toughness

 $K = K_c \text{ for fast fracture}$ $Y\sigma\sqrt{\pi a} = K_c$ $\sigma = \frac{K_c}{Y\sqrt{\pi a}} = \sigma_c \text{ Critical Fracture Stress}$ $a = \frac{1}{\pi} \left(\frac{K_c}{\sigma Y}\right)^2 = a_c \text{ Critical Crack Size}$

- K_c changes with B (thickness of plate) when B < B*
- When $B > B^*$, $K_c = constant = K_{Ic}$

Physics of Fast Fracture

- Smaller the radius of curvature at the crack tip, the sharper the crack.
- Stress concentration factor $K_t = \frac{\sigma_m}{\sigma_o} = 2\sqrt{\frac{a}{\rho_t}}$, $\sigma_m = 2\sigma_o\sqrt{\frac{a}{\rho_t}}$

Ductile Fracture

- Material with moderate yield strength (metal)
- Plastic zone exists near crack tip
- Role of plastic deformation
 - Stress decreases
 - Radius of tip increases (blunting)
 - o Critical stress intensity increases as the plastic work takes a lot of energy
- Higher temperature

Brittle Fracture

- Material with high yield strength (ceramic)
- Near the crack tip the plastic zone is very small, plastic deformation not significant
- Lower temperature

Fatigue

- Caused by cyclic stressing which produces slow crack growth resulting in fast fracture
- S-N curve (Stress vs Number of cycles in log scale)
- Cannot fail due to fatigue below a certain fatigue limit

Fatigue process

- Cyclic stressing causes slow crack growth
- Cracks nucleate on surface/defect
- Propagation
 - Stage 1 Along planes with high resolved shear stress
 - Stage 2 Perpendicular to applied tensile stress
- Fast fracture

Crack propagation rate

- Applies to high cycle fatigue (>10^4)
- $\frac{da}{dN} = A(\Delta K)^m$
- $\Delta K = Y \Delta \sigma \sqrt{\pi a}$, $\Delta \sigma = \sigma \max \sigma \min$

Fatigue life

- Only the life for crack propagation
- Life for crack initiation MAY be significant depending on situation. Assumed to be not needed as there are always existing defects.

$$N_f = \frac{1}{\left(A\pi^{\frac{m}{2}}\Delta\sigma^m\right)} \int_{a_0}^{a_c} \frac{1}{Y^m a^{\frac{m}{2}}} da$$

Creep

General

- Time dependent plastic deformation
- Important at higher temperatures (>0.4 Melting Temp)
- Eventually leads to rupture

Creep Stages

- Three stages
 - Primary Creep rate decreases
 - Secondary Creep rate is constant
 - Tertiary Creep rate increases until fracture
- At a constant T, creep rate increases and creep life decreases with increasing stress
- Second state creep rate dependent on stress, n is stress exponent and K1 is constant.

$$\dot{\epsilon_s} = K_1 \sigma^n$$

- At constant stress, creep rate increases and creep life decreases with increasing temperature
- Second state creep rate dependent on temperature, Qc is activation energy for creep and K1 is constant

$$\dot{\epsilon_s} = K_2 \exp(-\frac{Q_c}{RT})$$

• Therefore the steady state creep rate is

$$\dot{\epsilon_s} = K\sigma^n \exp(-\frac{Q_c}{RT})$$

- n and Qc are important
 - n=1: diffusional creep
 - n=1-2: grain boundary sliding
 - n=3: viscous glide of dislocations
 - o n=4-5: dislocation climb

 Qc can be compared to activation energies for various diffusion processes that may control creep

Extrapolation methods

- Impractical to test for creep with real temperatures as it may take too long
- Larson-Miller parameter, is constant at a certain stress level (C is a constant)

 $LMP = T(C + \log t_r)$

Creep resistance

- High melting temp
- High elastic modulus
- Large grain size

Mechanical Properties Summary

Stiffness

- Resistance to elastic deformation
- Elastic modulus (E,G, etc)

Strength

- Resistance to plastic deformation
 - Yield strength
- Limited by fracture
 - Fracture Strength

Ductility

- How much plastic deformation without fracture
- Tensile elongation or area reduction

Toughness

- Resistance to fast fracture
- Fracture toughness (Kc)

Mechanics

 $\epsilon = \frac{du}{dx}$ Strain = Change in Displacement

 $\gamma_{xy} = \frac{du_2}{dx} + \frac{du_2}{dy}$ Shear Strain(angle)

 $E = \frac{\sigma}{\epsilon}$ Hooke's Law

 $\epsilon_{xy} = \frac{1 + \nu}{E} \sigma_{xy}$ Hooke's Law (Shear)

 $U = \frac{1}{2}\sigma_{xx}\epsilon_{xx}$ Strain Energy Density

$$\int \int \delta U \, dx dy = \int \int P_x \delta u_1 + P_y \delta u_2 \, ds + \int \int B_x \delta u_1 + B_y \delta u_2 \, dx dy = 0 Virtual Work$$

$$\frac{dV}{dP} = u, \frac{dV}{dM} = \theta$$

Castigliano's Theorem

 $U = \int_{0}^{L} \frac{M^{2}}{2EI} dx, \text{ where } M = EI \frac{d^{2}y}{dx^{2}}$ Strain Energy in beam

 $V = \frac{1}{2}P\delta = mg(h + \delta) \text{ (massless)}$ $V = \frac{1}{2}P\delta = mgh + (m + m_c)g\delta \text{ (mass)}$ Strain energy in impact loading

$$P = \sigma A = \frac{EA\delta}{L}, \delta = \frac{PL}{AE}$$
$$V = mgh + (m + m_c)\delta g$$
$$P = mg\left(1 + \sqrt{1 + 2h\left(\frac{EA}{mgL}\right)}\right)$$
$$\delta = \frac{mgL}{EA} + \sqrt{\left[\left(\frac{mgL}{EA}\right)^2 + 2h\left(\frac{mgL}{EA}\right)\right]}$$

Mass falling onto massless flange

$$\delta = \frac{PL^3}{48EI}$$
$$P = mg\left(1 + \sqrt{1 + \frac{96EIh}{mgL^3}}\right)$$

Mass falling onto a massless beam

$$P_{cr} = \frac{n^2 \pi^2}{L^2} EI$$
$$y = Asin \frac{n\pi x}{L}$$

Critical load and buckling mode (central load)

$$\delta = e \left[\sec \left(\frac{\pi}{2} \sqrt{\frac{P}{P_{cr}}} \right) - 1 \right]$$

Deflection with eccentric load

$$\sigma_{max} = \frac{P}{A} \left[1 + \frac{ec}{r^2} \sec\left(\frac{L}{2r}\sqrt{\frac{P}{EA}}\right) \right]$$

$$\sigma_{max} = \frac{P}{A} = \frac{\pi^2 E}{\frac{L}{r^2}}, for \ e$$

$$= 0, \ failure \ when \ P = P_{cr}$$

$$r = \sqrt{\frac{I}{m}}$$

Secant Formula

$$\sigma_{xmax} = \frac{M_{max}c}{l}$$
Flexure

$$\sigma_{1} - \sigma_{3} > \sigma_{Y}$$

$$\sigma_{1} > \sigma_{2} > \sigma_{3}$$
Max shear stress > $\frac{\sigma_{Y}}{2}$
Tresca Criterion(more conversative)

$$\sigma_v = \sqrt{\sigma_1^2 + \sigma_2^2 - \sigma_1 \sigma_2}$$

Von mises Criterion for plane stress, (most accurate)